Rate of convergence for Bernstein polynomials revisited

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Rates for Density Estimation with Bernstein Polynomials

Mixture models for density estimation provide a very useful set up for the Bayesian or the maximum likelihood approach. For a density on the unit interval, mixtures of beta densities form a flexible model. The class of Bernstein densities is a much smaller subclass of the beta mixtures defined by Bernstein polynomials, which can approximate any continuous density. A Bernstein polynomial prior i...

متن کامل

On the Convergence and Iterates of q-Bernstein Polynomials

The convergence properties of q-Bernstein polynomials are investigated. When q > 1 is fixed the generalized Bernstein polynomials Bnf of f , a one parameter family of Bernstein polynomials, converge to f as n → ∞ if f is a polynomial. It is proved that, if the parameter 0 < q < 1 is fixed, then Bnf → f if and only if f is linear. The iterates of Bnf are also considered. It is shown that B n f c...

متن کامل

Discrete Bernstein Inequalities for Polynomials

We study discrete versions of some classical inequalities of Berstein for algebraic and trigonometric polynomials. Mathematics subject classification (2010): 30C10, 41A17.

متن کامل

Division algorithms for Bernstein polynomials

Three division algorithms are presented for univariate Bernstein polynomials: an algorithm for finding the quotient and remainder of two univariate polynomials, an algorithm for calculating the GCD of an arbitrary collection of univariate polynomials, and an algorithm for computing a μ-basis for the syzygy module of an arbitrary collection of univariate polynomials. Division algorithms for mult...

متن کامل

A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1987

ISSN: 0021-9045

DOI: 10.1016/0021-9045(87)90064-5